


The Premise

Until a few decades ago data encryption and decryption was handled 
entirely on a hardware level. 

At the time, cryptographic software implementations were simply not 
feasible, especially when considering the operations involved in
asymmetric cryptography.

Breakthroughs in hardware technology over the 80’s and 90’s have 
resulted in the availability of cheap and powerful personal computers.

This has lead to an array of commercial, free and open source 
cryptographic software being made available.



The Pitfalls

A dedicated hardware device will perform encryption and decryption 
operations faster than a general-purpose computer, which has to deal with 
overheads such as the OS.

When commercial / closed-source cryptographic applications are put to use 
one can never be certain that:

A) The algorithm being used is a strong one
B) The algorithm has been properly implemented 
C) Data encryption and decryption is being performed correctly.

There’s always the dilemma that the software may be modified by a 
malicious party unbeknownst to its user(s). The result of which could 
render the entire encryption/decryption process redundant.

Data encrypted with commonly used and popular encryption software is 
often easy to recognize.



The Pro’s

The availability of tried-and-tested libraries such as OpenSSL, Botan and 
Crypto++ allow software developers to seamlessly incorporate strong 
crypto into their applications without having to worry too much about 
implementation.

It has brought privacy to the man on the street, where before it was 
generally reserved for wealthy corporations and governments.

It has opened up new avenues and uses for cryptography, for example it’s 
frequent usage these days as a software registration and protection 
mechanism.

It’s eliminating dated clear text protocols that are becoming more and 
more of a security risk.



The Requisites

• Randomization

Decent hardware based random devices provide a source of truly un-
guessable random bits. 

UNIX and Linux variants normally include entropy pools that make use of 
various system interrupts to acquire random data. These provide random 
bits strong enough for usage in cryptographic applications.

- What if someone were able to compromise the system and modify the 
various commonly used random devices (random, urandom, srandom & 
arandom) to provide predictable bit sequences? 



The Requisites

• Randomization

Pseudo-random sources such as the well-known rand() and random() 
functions should never be made use of as they have no where near the 
strength required for any cryptographic purpose.

Instead a strong pseudo-random number generator such as arc4random() 
(built on the arc4 cipher) provides a decent means of compromise in both 
speed and levels of randomization. (The arc4random() function is seeded 
by the arandom device)



The Requisites

• Key generation

Symmetric ciphers require a common key be known amongst all parties 
involved in the communication process. 

- Presents various problems regarding key distribution

- As more people are included in the communication the higher the
likelihood becomes of the key being compromised

Asymmetric ciphers overcome these issues.

- Keys could still be compromised if the malicious party were able to view 
the generation process, or, if there was no generation process to speak 
of....



The Requisites

• Key generation – RSA 512 example

Generating keys is often a very resource intensive process. 

If you consider the example operations required to generate a simple 
512bit RSA public/private key:

P (random prime):
750451860782491859304469743321934243791782058465872244625662
86795839939672859

Q (random prime):
910001151996318706004337747310767895344022343228221849032856
77710662434112979



The Requisites

• Key generation – RSA 512 example

N (P*Q):
682912057829848579468557233126368097127100586049553761370872
177374329621034707891996748760902690879109741155339952178059
6305888323549458777341223105936961

φ (P-1)*(Q-1):
682912057829848579468557233126368097127100586049553761370872
177374329621034691287466620972797037791034834828318560820015
6136478914183606812834720732151124

E (Less than N, relatively prime to φ):
65537



The Requisites

• Key generation – RSA 512 example

D (inverse of e modulo φ):
272656314832473532971821544501343479705017225911662476464138
446880032788562090608783612377347258660607252210473220660337
3445032687924809738996800321611705

To encrypt data with the generated public key, the computer would have 
to calculate:

message to the power 65537 mod 
682912057829848579468557233126368097127100586049553761370872
177374329621034707891996748760902690879109741155339952178059
6305888323549458777341223105936961 

Or pt^E%N



The Requisites

• Key generation

It’s clear that a lot of strenuous calculations are required of standard 
workstations to generate safe keys.

It should also be noted that these days 1024 – 2048 bit keys are the 
accepted standard.

Is it unthinkable that software vendors might opt for hardcoding primes to 
be used for public key/key exchange into their applications (perhaps using 
weak xor encryption/decryption to obfuscate them), simply to save cpu
cycles on a customers computer?

Would it be equally unthinkable for vendors hardcode symmetric keys into 
an application?



The Requisites

• Key generation

Example: 

Winace’s CCrypt made use of 2048bit RC6 implementation which proved 
entirely redundant as key generation was handled abysmally.

Quoted from the release notes:

“Encoding your credit card data If you feel uncomfortable sending your 
credit card information over the internet, we suggest to use our tool 
CCrypt to encrypt your data offline before e-mailing it to us.”

A decryptor was released shortly afterwards



The Requisites

• Key generation

Flawed by design, Winace’s CCrypt was quickly defeated



The Requisites

• Key generation

Sadly this isn’t the only instance of bad implementation when it comes to 
storing/generating keys.

Software registration schemes that rely on symmetric cryptography are 
often easily defeated. Simple crypto analyzers can detect the cipher in use 
and thus alert the circumventor of what to expect. This of course gives 
developers the chance to obfuscate their applications with large prime 
listings, sbox’s of ciphers not in use and an array of other items a generic 
crypto analyzer might pick up on.

Asymmetric ciphers normally fair better when put to use in a software 
registration context, often because of large number libraries that can 
appear confusing when sifting through disassembled code. Often the 
complex math involved acts as a decent deterrent.



The Requisites

• Key generation

PEiD’s built in crypto analyzer detects a DES substitution 
box resident in our test-wrapper



The Requisites

• Transmission

Pre-secured channels using a strenuously tested and well known protocol 
such as IPsec are not always an available or feasible option.

What if the data to be sent is strictly confidential and the only transmission 
medium available is a clear text channel such as SMTP/POP3 or SMB?

What about encapsulating the data to be sent (in this case we’ll assume 
it’s a document) in a self-decrypting/extracting executable wrapper?

Software that performs such functions is vast in number, but they often all 
succumb to the same downfalls…



The Requisites

• Transmission

Software Wrapper: The data is first encrypted, often compressed, and 
then in most cases bundled inside a binary executable.

Of course it is generally dependant on the software being used, but 
occasionally it’s no large task separating the encrypted data from the rest 
of the binary with nothing more than a hex or PE editor at your disposal.

Often it is the case that such programs will append the encryption key 
(assuming PK/KE isn’t put to use) either to the end of the encrypted data, 
or stores it permanently within the wrapper software. 

Another common mistake is generating a replica of the actual key in 
memory when checking against an entered key. This of course means the 
key can be fished from the executable…



The Requisites

• Transmission

If for example, the wrapper software accepts input from the user, and 
based upon the input hashes or generates a key which must be identical 
to the original encryption key.

This allows for a malicious party who has intercepted the wrapper to 
harvest the key relatively easily.

A better method would be to prompt the recipient for a key, decrypt that 
input and used the decrypted data as the key. This of course would mean 
that the actual key would have to be encrypted and communicated to the 
recipient through other secure channels



Avoid re-creating the original key for verification purposes



The Requisites

• Storage

Encrypted data can reside anywhere from a software perspective, so long 
as it stays encrypted.

If a cryptographic volume or partition is made use of to store incoming 
data that has been encrypted, then one needn’t worry where data is 
decrypted to, so long as it is being written to encrypted storage it will be 
safe, right?

What about the decryption process? 



The Requisites

• Storage

In the case of the aforementioned mentioned wrappers, data is placed in 
memory as it’s siphoned through the decryption process, and in the vast 
majority of instances remains, if at least temporarily, decrypted in memory 
before being written to permanent storage.

Another viable question to ask is where are keys being stored throughout 
this process?

What happens when data is flushed to the swap file? Not all OS’s make 
provision for encrypting swap files.



The Requisites

• Storage

Let’s assume that usage of cryptographic storage device is not available, 
and the user intends to simply view the data after decryption and then 
delete the decrypted data afterwards, retaining it only in its encrypted 
form.

However, after deletion, residual data will remain on the disk until it is 
written over by the OS. Effectively allowing a time frame for malicious 
parties to recover the decrypted data. 

Re-encrypting the data before deletion would prevent this, but might not 
always be feasible.



Proprietary Algorithms

• Restricted Algorithms

Un-disclosed symmetric algorithms that rely on the secrecy of the 
algorithm instead of the secrecy of the key can never be considered 
secure.

If the algorithm is compromised it becomes completely worthless. Vendors 
who release software claiming to make use of their own algorithms don’t 
realize how quickly an algorithm can be reverse engineered. An example 
of this is the proprietary cipher used to encrypt DVD data.

Time-tested ciphers that have been submitted to vast amounts of crypt
analysis and have proven themselves strong, should always be selected 
over unknown and untested ones.



Software Protection Mechanisms

What if cryptography where applied to an online software 
registration/verification scheme?

A working example of this might be the following scenario:

A software vendor requires users to purchase their product online. They 
have decided to implement a diffie-hellman key exchange to create valid 
registration numbers for customers.

They release a trial or feature-disabled version of the product. Customers 
are able to download and test the product to see if they might want to 
purchase it.

If they opt to buy the product, they are required to fill out an online billing 
form. 



Software Protection Mechanisms

After completing the form they are presented with 2 different numbers 
which are to be entered into the products registration form. 

Call these numbers p and g.

Where p is a safe prime number and g is primitive mod p

The product then generates its own random number (a) which is 
transmitted to the vendor’s registration repository for storage, and then 
calculates

Product number = g ^ a % p

(g to the power a mod p) 



Software Protection Mechanisms

To confirm payment the product transmits it’s product number to the 
vendor’s registration repository. 

The vendor then generates it’s own random number (b) and calculates:

Vendor number = g ^ b % p

(g to the power b mod p)

The vendor then calculates:

Customer key = vendor number ^ a % p

Vendor key = product number ^ b % p

(vendor key / customer key to the power b / a mod p)



Software Protection Mechanisms

If the vendor key and customer key match the vendor then transmits the 
original vendor number (Vendor number = g ^ b % p) back to the 
product.

The product now calculates the customer key once more:

Customer key = vendor number ^ a % p

And uses the result to register the software.



Summary

As technology evolves, seemingly unfeasible attacks such as factoring and 
brute-forcing will become more and more of a reality.

Cryptographers will have to devise new and cunning ways to harness and 
implement evolving technologies whilst dispelling new methods of attack. 


